
Declarative Language FlexT for Analysis and
Documenting of Binary Data Formats and Its Use for

Data Reading Code Generation

Alexei Hmelnov

Matrosov Institute for System Dynamics and

Control Theory of Siberian Branch of Russian Academy of Sciences

Irkutsk, Russia

http://hmelnov.icc.ru/FlexT/

5 марта 2022 г.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 1 / 40

http://hmelnov.icc.ru/FlexT/

Abstract

The language FlexT (Flexible Types) is intended for specification of binary
data formats. The language is declarative and designed to be well
understood for human readers. Its main elements are the data type
declarations, which look very much like the usual type declarations of the
imperative programming languages, but are more flexible. While the primary
purpose of the language FlexT development was to make the binary data
understandable by displaying them according to the format specifications,
recently we have implemented the code generator, which can produce data
reading code in some imperative languages from the specifications.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 2 / 40

Requirements for Scientific Data Representation

It becomes not enough to just obtain the data, process them and write
some articles using the results of the processing

It is also required to share the data with other researchers

These researchers may be not only our contemporaries but also our
descendants, living in a few decades from now

The data, that we have stored for them, may become very precious,
because they can’t recollect the same data again (You cannot enter
the same river twice)

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 3 / 40

The Binary File Formats vs the Text Ones

The binary data formats are much more space- and time-efficient, than the
text-based ones. The main disadvantage of the binary data is that they
look opaque for the users and it is hard to control their contents with a
"naked eye". That’s why programmers nevertheless often prefer to use the
text formats, and among them the XML-based ones are of great popularity
in spite of the fact that it becomes impossible for a human being to
comprehend the extremely large text files.

Binary files

space-efficiency

simper and faster data
reading/writing code

random access (Seek
operation), reading/writing of
fragments

Text files

transparency

easy editing

byte order agnostic (except for
UTF-16 and the like)

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 4 / 40

The Choice of a New Generation is Text
The texts are usually of some markup kind like XML/JSON/YAML.

Reasons

now developers often exchange efficiency of binary files for easier control over the
correctness of text files contents;

often text formats are based on the XML syntax, since there exist ready to use
libraries and tools for this syntax that facilitate development of algorithms for
reading/writing information;

for XML it is possible to automate the control of the correctness of the file
structure (using XML schemas).

My opinion

It is better to store the information that needs to be edited frequently (for
example, program settings) in small text files. Otherwise (when using binary files)
we will have to write special editing forms for the binary files.

It is better to avoid using text formats to exchange large amounts of information.

To ensure the transparency of binary files and control their correctness we can use
binary file format specifications.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 5 / 40

The Goals of the Development of the Languages for
Specification of Binary Data Formats

Documenting of data formats

Checking data for compliance to specification with error diagnostics

Data reading code generation

Meta-information for data processing/transfer libraries

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 6 / 40

Related works (1/2)

Tool Purpose Kind Formats
described

Bit
types

Poin-
ters

Vari-
ants

Human
readable

Comment

BFF (Binary File
Format
Definition)

reverse engineering of the
AutoCAD DWG

Gramma-
tics

DWG - ? ? ?

DFDL (Data
Format
Description
Language)

specifications of text and
binary data used in
GRID-systems, Open Grid,
IBM

XML,
simple
records

tables in
specialized
exchange
formats

- - ? -

MFL (Message
Format
Language)

Specifications of exchange
formats in WebLogic
Integration, Oracle

XML, data
streams

data in
special
exchange
formats

- - +,
supports
optional
fields

-

NetPDL specifications of network
protocols and packet formats

XML, data
streams

network
packets

+,
primi-
tive

- + -

BinPAC specifications of network
protocols, data reading code
generation

modified
Bison files,
data
streams

network
packages

- - + +

EAST (Enhanced
Ada SubseT)

developed by CCSDS to
facilitate the exchange of
information between space
systems

Ada data
types, data
streams

sequentially
transmitted
space
data

+ - +,
case
by

external
value

+ simple
expressions
of single
value

HUDDL specification of hydrographic
data, code generation

XML, data
streams

hydrogra-
phic
formats

? - ? -

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 7 / 40

Related works (2/2)

Tool Purpose Kind Formats
described

Bit
types

Poin-
ters

Vari-
ants

Human
readable

Comment

Advanced
Language
Processing
Technology
Applied to
Digital Records

integration of
heterogeneous
information for military
decision making, data
reading code
generation, USA
military institute

attributed
grammatics

sequential
formats

? - ? +

DataScript generation of data
reading libraries in Java

data type
definitions

Java
CLASS
(no
opcodes),
DVI, ELF

+,
primitive

-,
has
compu-
table
labels

+,
unions
with
criteria

+ no updates
since 2003

Miraplacid
Binary DOM

implementation of
universal binary and
text data access library,
DOM-like

data type
definitions

21 format
including
text ones

- + - + Tree of data
structures,
selects
current in
hex dump

Kaitai Struct binary data parser
generation from
specifications

∼JSON,
sequential,
has optional
& repeating
parts

36 formats - + + - Now they
have Switch
type

Synalyze It!,
Hexinator

Binary data viewer XML,
grammatics
in Python

∼ 80

formats,
mostly for
macOS

+ + + - Tree of data
structures,
colored
dump parts

FlexT Binary data parsing,
data reading code
generation

data type
definitions

∼ 100

formats
+ + + +

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 8 / 40

Related works: conclusions

for many subject areas the need to use data format specifications is
recognized

sometimes the task is not to describe arbitrary formats, but only to
facilitate processing of some their subset

sometimes the task of describing arbitrary formats is set, but not all
the constructions necessary to solve it are implemented

often XML/JSON representation is chosen for specifications, which
makes them hardly human-readable

but in some projects, the requirement of the ease of perception of the
text by human reader was clearly set

a binary format specification is usually treated as a grammar, or as a
sequential structure, or as a set of data types

many specification languages have been created to facilitate
development of data processing code

developers of the tools rarely study related works

the task of describing binary data is in demand

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 9 / 40

The Language FlexT

FlexT – Flexible Types.
Flexible types – the types, that can adjust to the data (data type sizes and
subitem offsets may vary).

The main goals of the language FlexT:

provide the instrument, that can help us to explore and understand the
contents of the binary files using format specifications (check and view
data using specification);

check whether the format specification is correct using the samples of
the format data (check specification using data).

The FlexT data viewer makes the binary data transparent.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 10 / 40

An Example of Binary Data – a DBF File

Hex dump of a small DBF file

The information encoded in the file as shown by a specialized viewer

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 11 / 40

FlexT Specification of the DBF File Format

type
TBinDate array [3] of Byte //date in

binary format (YYMMDD)

TDBF3FldKind enum Char (
fkChar=’C’, fkNumeric=’N’, fkLog=’L’,
fkDate=’D’, fkMemo=’M’

)
TDBF3FldDsc struc

array [11] of Char ,0; Name //Name -

ASCIIZ string

TDBF3FldKind hType
ulong DataP //like Delphi Tag

Byte Len //field length in bytes

Byte DecNum // number of digits after

dot

Word MUsrRsrv1 // Reserved for multiuser

systems

Byte WorkID //ID of working area

Word MUsrRsrv2 // Reserved for multiuser

systems

Byte SetFldData //used by the command

SET FIELDS

array [8] of Byte Reserved
ends
PDataArray ^TDataArray near
TDBF3Hdr struc

Byte Ver //0x02 -dBase II ,0x03 -dBase

III

//0x83 -dBase III with Memo -

fields

TBinDate LastChangeDate
ulong RecCnt // Record count

PDataArray HdrLen // Length of header

in bytes

Word RecLen // Length of record

in bytes

(array [20]of Byte) Reserved
ends

TDBF3HdrWithFields struc
TDBF3Hdr H
array [(@.H.HdrLen -@.H:Size -1) div

32] of TDBF3FldDsc Fields
ends

data
0x0000 TDBF3HdrWithFields Hdr

type
TFieldData array[Hdr.Fields [#]. Len]of

Char
TFieldsData array of TFieldData :

[@:Size=Hdr.H.RecLen -1]
TRecData struc

Char F
TFieldsData D

ends
TDataArray array[Hdr.H.RecCnt] of

TRecData

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 12 / 40

The Parse Results for the DBF File

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 13 / 40

The Advantages of Specifications
in comparison with the possible sources of information about a file format:

documentation The vast majority of the format specifications written in
natural language contain errors and ambiguities, which can
be detected and fixed by trying to apply the various versions
of specification to the real data to find the correct variant of
understanding of the format description;
Inaccuracy, incompleteness, ambiguity

source code The information about a file format may also be obtained
from the source code of a program that works with it. But
the code contains a lot of unessential details of some
concrete way of data processing. So, the resulting
specification will be much more concise and understandable;
The information about format is intermixed with file I/O
and data processing operations

data samples We have a successful experience of reverse engineering of
some file formats using just the samples of data.
Initially specification is missing

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 14 / 40

Features of the FlexT Language

The major part of the information about a file format is represented by
the data type declarations

In contrast to the data types of imperative programming languages,
the FlexT data types can contain data elements, the size of which is
determined by the specific data represented in the format. Thus, we
can say that the types flexibly adjust to the data

After defining the data types, it is required to specify the placement in
memory of some data elements which have some of these types
(declare variables)

The language syntax was chosen to be well-understandable by human
reader

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 15 / 40

Dynamic Data Types vs Static Ones

Type Static Dynamic

Size fixed data-dependent

Sub-item

offsets

fixed data-dependent

Usage types of variables types of constants

Pascal

examples TName=array [0..31]

of Char;

TId = string [32];

const CP: PChar =

’Hello’;

var S: String;

...

S := ’Hello’;

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 16 / 40

RTTI: examples of dynamic data types

RTTI – RunTime Type Information

Data type declaration in
Pascal (in TypInfo unit)

The function for fetching the
TypeData field

FlexT specification of
the type

PTypeInfo = ^TTypeInfo;
TTypeInfo = record

Kind: TTypeKind;
Name: ShortString;

{TypeData: TTypeData}

end;
PTypeData =^ TTypeData;
TTypeData=packed record

case TTypeKind of

function GetTypeData(TypeInfo:
PTypeInfo): PTypeData;

asm
XOR EDX ,EDX
MOV DL ,[EAX]. TTypeInfo.

Name.Byte [0]
LEA EAX ,[EAX]. TTypeInfo.

Name[EDX+1]
end;

TTypeInfo struc
TTypeKind Kind
Str Name
TTypeData TypeData

ends

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 17 / 40

Parameters and properties of data types

Data types can have a number of properties (depends on the kind of
the type).

For example, the size and the number of elements are the properties of
arrays, and the selected case number is the property of variants.

Each data type has the property Size

The values of the properties can be specified in the statements of type
declaration, and also by expressions that compute the value of this
property using the values and properties of the nested data elements
and/or the values of the parameters of the type in the block of
statements.

The parameters in the type declaration represent the information that
needs to be specified additionally when the type is used (called).

Almost all the FlexT data types have their bit-oriented versions.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 18 / 40

Specifics of the FlexT language (1/2)
1 Sub-elements of variable size

FldNameTbl: array[@.numFields] of pchar;

2 Parameters and properties of data types
THdrData(Kind ,Cnt) case THdrValType(@:Kind) of

CHAR: array[@:Cnt] of Char

..........................

endc

3 Qualifiers of properties, parameters and sub-elements in expressions
▶ V[i] – array element;
▶ V.A – record field;
▶ V.0x15, V.’asoc’ – case of variant;
▶ V:Size – parameter or property;
▶ @ – the instance of the type being defined (let’s call it Self or this);
▶ V@ – the parent of V (inside which it is defined), available for nested

types only, data type of V@ is known;
▶ V:@ – owner of V (the variable that immediately contains V), data type

of V:@ is unknown;
▶ V:# – ordinal number of V inside its owner;
▶ &V – address≡file offset of V, integer value.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 19 / 40

Specifics of the FlexT language (2/2)

4 Blocks of additional data type information:
▶ Block of statements :[@.offset:Cnt=@.count]
▶ Block of assertions (correctness conditions) :assert[@.Op>=0x80]
▶ Display block :displ=(INT(2*@))
▶ Auto-naming block :autoname=(@.tag)
▶ Definition of additional computable property :let Val=(@.0)exc(@.1)

5 Type calls PSubSecData(Kind=@.subsec)lfo

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 20 / 40

FlexT data types (1)

Type Example Description/purpose
Integera

num -(6)
differ by the size and the presence of a sign

Emptya void the type of size 0, marks a place in memory

Charac-
tersa

char, wchar, wcharr In the selected character encoding or Unicode with the byte
orders LSB or MSB

Enumera-
tiona enum byte (A=1,B,C)

specifies the names of constants of the basic data type

Term
enumera-
tion

enum TBit8 fields(
R0: TReg @0.3 ,...)

of(
rts(R0) = 000020_,...)

simplifies description of encoding of machine instructions,
specifies the bit fields, the presence of which is determined by
the remaining bits of the number

Set of
bitsa set 8 of (

OLD ^ 0x02 , ...)

gives the name to bits, the bits can be designated by their
numbers (the symbol ’=’ after the name) or masks (the symbol
’^’)

Recorda

struc
Byte Len
array[@.Len]of Char S

ends

Sequential placement in memory of named data elements, which
may have different types

Varianta

case @.Kind of
vkByte: Byte

else ulong
endc

Selects the content type by the external information

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 21 / 40

FlexT data types (2)

Type Example Description/purpose
Type
checka try

FN: TFntNum
Op: TDVIOp

endt

Selects the content type by internal information (the first type,
which satisfies its correctness condition)

Arraya

array[@.Len]of str
array of str ?@[0]=

0!byte;

Consecutive placement of the constituent parts of the same type
in memory (the sizes of which may vary). It may be limited by
the number of elements, the total size, or the stop condition

Raw
dataa raw[@.S]

Uninterpreted data, which is displayed as a hex dump

Align-
menta align 16 at &@;

Skips unused data to align at the relative to the base address
offset, which is a multiple of the specified value

Pointer
^TTable near=DWORD ,

ref=@:Base+@;

Uses the value of the base type for specifying the address (for
files – the file offset) of the data of the referenced type in
memory

Forward
declara-
tiona

forward
allows to describe cyclic dependencies between data types

Machine
instructions codes of TOpPDP ?(@.Op

>=TWOpCode.br)and ...;

machine code disassembling

aSupported by the reader code generator

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 22 / 40

Byte Order and Bit Datatypes

A bit record

type bit
TBitRec struc

num +(6) A
num +(8) B
num +(2) C

ends

The order of bytes and bits in a 2-byte word

of bit in byte 0 70 7 7 07 0

of byte 0 1 0 1
of bit in word 0 78 15 15 87 0

normal – LSB reverse – MSB

Bitwise placement of the TBitRec fields

of bit in byte 0 70 7 7 07 0

of byte 0 1 0 1
field of TBitRec A B C A B C
of bit in field 0 50 7 0 1 5 07 0 1 0
field bit offset 0 6 14 0 6 14

normal – LSB reverse – MSB

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 23 / 40

STL files

STL - STereo-Lithography:

The main format for 3D models

Extremely simple

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 24 / 40

The STL format specification in FlexT and parse results

data
0 array [5] of char Hdr0
assert not(Hdr0=’solid’);

include Float.rfi

type
TSTLPoint array [3]of TSingle
TSTLFace struc

TSTLPoint Normal
array [3]of TSTLPoint Vertex
Word Attr

ends

data
5 array [75] of char Hdr1
80 ulong Count

assert 84+ Count*TSTLFace:Size=FileSize;

data
84 array[Count] of TSTLFace Faces

Parse results

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 25 / 40

The HiSCORE custom file format specification
type bit
TBit5 num +(5):displ=(int(@))
TBit6 num +(6):displ=(int(@))
TDNS num +(7):displ=(int(@*10))
TBit10 num +(10):displ=(int(@))
TTime struc

TDNS dns
TBit10 mks
TBit10 mls
TBit6 s
TBit6 m
TBit5 h
num +(20) rest

ends:displ =(int(@.h),’:’,int(@.m),’’’’,int(@
.s),’.’,int(@.mls),’␣’,int(@.mks),’␣’,
int(@.dns))

type
TVal num +(2):displ=(int(@))
TTrackInfo struc

word offset //track offset

TVal N //длина N

array[@.N]of TVal Data //N байт - track

data

ends:displ =(’[’,ADDR(&@),’]’,@)

TPkgData(Sz) struc
array [9]of TTrackInfo Tracks
ulong Stop //4 байта - FF FF FF FF -

package end

raw[] rest //Just in case

ends:[@:Size=@:Sz]: assert[@.Stop=0 xFFFFFFFF]

TPkgHdr struc // Package header (24 байта):

word idf //data type id = 3008

word NumBytes // package size (without the

24 bytes of the header)

ulong NumEvent //event counter number

ulong StopTrigger // position of stop

trigger in DRS counts

TTime EventT //event time

word IP //IP adress

word NumSt // Number of station

TPkgData(@.NumBytes) Data
ends:assert[@.idf =3008]

data
0 array of TPkgHdr :[@:Size=FileSize] Hdr

read_hisc.c - 278 lines, Hiscore.rfi -
47 lines

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 26 / 40

Weather data in the MM5 format

One of the possible sources of information about a file format is the source
code, which can process it.

The advantages of the source code over the descriptions in natural
language are its proved correctness (the code can indeed process the
data) and the lack of ambiguity.

So, it may seem that understanding a file format by analyzing a source
code for its processing will always be easy and preferable to reading
the specifications in natural language.

BUT in our experience of FlexT usage we have an indicative example,
which demonstrates, that sometimes it may be very hard to understand the
file format using the source code.
The file format MM5 was used for representation of the weather forecast
data, computed by some Earth climate models. The data contain
multidimensional grids for the various climate values (temperature,
pressure, wind speed and so on). It was required to read the MD5 file to do
something useful with it (say, compute the isolines).

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 27 / 40

Excerpts from the file readv3.f for reading the MM5

program readv3 ! This utility program is written in free -format

Fortran 90.

...

integer , dimension (50 ,20) :: bhi

real , dimension (20 ,20) :: bhr

character(len =80), dimension (50 ,20) :: bhic

character(len =80), dimension (20 ,20) :: bhrc

character(len =120) :: flnm

integer :: iunit = 10

...

print*, ’flnm␣=␣’, trim(flnm)

open(iunit , file=flnm , form=’unformatted ’, status=’old’, action=’

read’)

...

read(iunit , iostat=ierr) flag

do while (ierr == 0)

if (flag == 0) then

read(iunit ,iostat=ier) bhi , bhr , bhic , bhrc

...

call printout_big_header(bhi , bhr , bhic , bhrc)

elseif (flag == 1) then

...

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 28 / 40

Excerpts from the MM5 data version 3 format specification
in FlexT and parse results
TBHi array [50]of array [20] of i4

Tbhr array [20]of array [20] of

TReal

TComment array [80]of Char ,<0x20;

TBHiC array [50]of array [20] of

TComment

TbhrC array [20]of array [20] of

TComment

TBigHeader struc

u4 BHSize //Size of Data -

added by Fortran write

TBHi BHi

Tbhr bhr

TBHiC BHiC

TbhrC bhrC

u4 BHSize_ //Size of Data -

added by Fortran write

ends:assert[@.BHSize=@:size -8,@.

BHSize_=@:size -8]

D:(BHSize:0001CB60;
BHi: (0: (0:11,1:1,2:6,3:0,4:52,5:52,

6:1,7:0,8:52,9:52,10:0,...),
1: (0:3,1:2,2:16,3:2,4:-999,5:-999,

6:-999,7:-999,8:-999,9:-999,...),
...
49: (0:-999,1:-999,2:-999,3:-999,

4:-999,5:-999,6:-999,7:-999,...);
bhr: (0: (0:9000,1:56.5,2:85,

3:0.71556681394577,4:60,...),
1: (0:21600,1:10000,2:-999,3:-999,

4:-999,5:-999,6:-999,7:-999,...),
...
19: (0:-999,1:-999,2:-999,...);

BHiC: (0: (0:OUTPUT FROM PROGRAM MM5 V3 ,
1:TERRAIN VERSION 3 MM5 SYSTEM FORMAT EDITION NUMBER ,
2:TERRAIN PROGRAM VERSION NUMBER ,
3:TERRAIN PROGRAM MINOR REVISION NUMBER ,...));

bhrC: (0: (0:COARSE DOMAIN GRID DISTANCE (m) ,
1:COARSE DOMAIN CENTER LATITUDE (degree) ,...));

BHSize_:0001CB60))

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 29 / 40

Advantages of formal specifications

compactness and absence of information that is not related to the
methods of storing data, which facilitates their perception by a human
reader;

verifiability by their usage for parsing valid data;

they may be used for localizing errors in generated files.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 30 / 40

Verification of data conformity to specification

The result of parsing data using specification can reflect the value of each
bit of the source file. Parsing data according to specification can be used
to:

validating data against the specification (like it is done for XML using
XML Schemas);

verify the specification for their compliance to valid format data;

A specification to be tested may allow data that only partially conforms to
the full specification.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 31 / 40

Refinement of specification in FlexT during its development

1 Describe in FlexT a fragment of the format as we understand it now;

2 Apply the current version for parsing a valid format file;

3 If the parse result has errors fix the specification, go to 2;

4 If it is not finished, got to 1

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 32 / 40

data Format Reverse Engineering

1 is the ultimate case of specification refinement;

2 should be applied when we have enough samples of data;

3 the best case: we have data generator, e.g. a compiler

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 33 / 40

Generation of data reading code

The format specifications are required to write a correct program, that
should work with the files of the format;

Because the FlexT language data types look similar to that of
imperative languages, it is possible to immediately use some parts of
specification to declare the data types, constants, and so on, which are
required to write the data processing code. Anyway the process of
writing the code manually is still time-consuming and error-prone;

So, we have implemented the code generator, which can automatically
produce the data reading code in imperative languages from the FlexT
specifications;

By its expressive power the FlexT language outperforms the other
projects developing the binary format specifications, so the task of
code generation for the FlexT specifications is rather nontrivial;

By now we have implemented the code generation for the most widely
used FlexT data types, but some complex types are not supported yet.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 34 / 40

Example of translation of FlexT expression

FlexT specification of polygon/polyline data in Shape file format

TArcData struc
TBBox BBox
long NumParts
long NumPoints
array[@.NumParts] of long Parts
array[@.NumParts] of struc

TXPointTbl ((@@@.Parts[@:#+1] exc @@@.NumPoints)-@@@.Parts[@:#]) T
ends Points

ends

Generated Pascal code, which provides accessor for the field T

function TTArcData_Sub1Accessor.T: TTXPointTblAccessor;
var

i0: Integer;
ndx0: Integer;

begin
if not Assigned(FT) then begin

ndx0 := Index +1;
if (ndx0 >=0) and(ndx0 <TTArcDataAccessor(TTArcData_Sub2Accessor(Parent).Parent).Parts.

Count) then
i0 := TTArcDataAccessor(TTArcData_Sub2Accessor(Parent).Parent).Parts.Fetch(ndx0)

else
i0 := TTArcDataAccessor(TTArcData_Sub2Accessor(Parent).Parent).NumPoints;

FT := TTXPointTblAccessor.Create(Self ,0,0,i0 -
TTArcDataAccessor(TTArcData_Sub2Accessor(Parent).Parent).Parts.Fetch(Index));

end;
Result := FT;

end ;

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 35 / 40

Generation of the test application

The first thing any programmer will want to do after generation of a
data reader is to test whether it works well.

To perform the test it is required to write some application, which will
use the data reader somehow.

The most obvious and illustrative task here is to print using the data
reader.

After creating manually several test programs of this kind we have
found that the process is rather tedious and that it should be
automated.

So, we have developed the algorithm, which automatically generates
the test code.

The test program generated together with the data reader allows to
immediately check the reader.

Of no less importance is the fact that the source code of the program
demonstrates the main patterns of data access using the reader.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 36 / 40

Fragments of the test application code in C++, immediate write style
std::unique_ptr <TSHPReader > must_free_Reader(new TSHPReader(FN));
Reader = must_free_Reader.get();
if (! AssertTShpHeader(Reader ->Hdr(),Reader))

exit (2);
cout <<"Hdr:"<<endl;
cout <<sIndent <<"Magic:␣"<<Reader ->Hdr()->Magic.Value()<<endl;
...
cout <<sIndent <<"FileLength:␣"<<Reader ->Hdr()->FileLength.Value()<<endl;
cout <<sIndent <<"Ver:␣"<<Reader ->Hdr()->Ver <<endl;
...
cout <<"Tbl:"<<endl;
for (i=0; i<Reader ->Tbl()->Count (); i++) {

V = Reader ->Tbl()->Fetch(i);
cout <<sIndent <<"["<<i<<"]:"<<endl;
cout <<sIndent <<"RecNo:␣"<<V->RecNo()<<endl;
cout <<sIndent <<"Len:␣"<<V->Len()<<endl;
if (!V->Data()->GetAssert ())

exit (2);
cout <<sIndent <<"Data:"<<endl;
cout <<sIndent <<"ST:␣"<<TShapeTypeToStr(V->Data()->ST())<<endl;
cout <<sIndent <<"SD:"<<endl;
switch ((TShapeRecData_Sub0_Case)V->Data()->SD()->hCase ()) {

case hcPoint:
cout <<sIndent <<"Point:"<<endl;
cout <<sIndent <<"X:␣"<<V->Data()->SD()->cPoint ()->X<<endl;
cout <<sIndent <<"Y:␣"<<V->Data()->SD()->cPoint ()->Y<<endl;
break;

...
case hcMultiPointZ:

cout <<sIndent <<"MultiPointZ:"<<endl;
...
cout <<sIndent <<"Points:"<<endl;
for (i13=0; i13 <V->Data()->SD()->cMultiPointZ ()->A()->Points ()->Count (); i13 ++) {

V13 = V->Data()->SD()->cMultiPointZ ()->A()->Points ()->Fetch(i13);
cout <<sIndent <<"["<<i13 <<"]:"<<endl;
cout <<sIndent <<"X:␣"<<V13 ->X<<endl;
cout <<sIndent <<"Y:␣"<<V13 ->Y<<endl;

}

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 37 / 40

Fragments of the test application code in Pascal, procedural style
procedure printTClassFile_Sub0(const sIndent: String; AV: TTClassFile_Sub0Accessor);
var

i: Integer;
V: TCp_infoAccessor;

begin
for i:=0 to AV.Count -1 do begin

V := AV.Fetch(i);
Writeln(sIndent ,’[’,i,’]:’);
printcp_info(sIndent+’␣␣’,V);

end;
end ;
...
procedure printTClassFile(const sIndent: String; AV: TTClassFileAccessor);
var

sIndent1: String;
begin

Writeln(sIndent ,’minor_version:␣’,AV.minor_version);
Writeln(sIndent ,’major_version:␣’,AV.major_version);
Writeln(sIndent ,’C_pool_count:␣’,AV.C_pool_count);
Writeln(sIndent ,’C_pool:’);
sIndent1 := sIndent+’␣␣’;
printTClassFile_Sub0(sIndent1 ,AV.C_pool);
...

end ;
...

Reader := TClaReader.Create(FN);
try

Writeln(’magic:␣’,Reader.magic);
Writeln(’Hdr:’);
printTClassFile(’␣␣’,Reader.Hdr);

finally
Reader.Free;

end;

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 38 / 40

Conclusion
We have considered the possible options, which should be examined when selecting
a file format for scientific data representation.

The formal specifications of binary file formats, especially for the custom ones, are
very important, because the natural language specifications are ambiguous, and it
may be hard to fetch the data format information from the source code.

The language FlexT allows to write compact, human-readable and powerful
specifications, which allow to check the correctness of data and resolve the
ambiguities in the understanding of the other kinds of information about file
formats.

It is also possible to generate from the FlexT specification the data reading code
and the code of the application, that can immediately test the generated reader by
printing the whole content of a binary file according to the specification using the
reader.

The current level of capabilities of the code generator is well characterized by that
it have successfully produced a full-featured data reader code for the well-known
for the GIS community Shape file format. The FlexT specification of the Shape
format takes approximately 180 lines of code. The code generator have produced
1570 lines of the reader code, and 375 lines of the test program.

The algorithm developed was also used for generation of the data readers for some
custom scientific file formats.

A. Hmelnov (ISDCT SB RAS) FlexT: analysis of binary data 5 марта 2022 г. 39 / 40

